Insertion mechanism of a poly(ethylene oxide)-poly(butylene oxide) block copolymer into a DPPC monolayer.

نویسندگان

  • Danielle L Leiske
  • Brian Meckes
  • Chad E Miller
  • Cynthia Wu
  • Travis W Walker
  • Binhua Lin
  • Mati Meron
  • Howard A Ketelson
  • Michael F Toney
  • Gerald G Fuller
چکیده

Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of amphiphilic block copolymer induced changes in membrane ion conductance on the reversal of multidrug resistance.

Block copolymers are able to reverse multidrug resistance (MDR) of tumor cells by a yet unknown mechanism. The drug efflux system's direct and indirect inhibition mediated by polymer P-glycoprotein (Pgp) interactions or adenosine triphosphate (ATP) depletion, respectively, may be involved in MDR reversal as well as damage to the membrane barrier caused by polymer insertion into the membrane. To...

متن کامل

Solubilization of a Poorly Soluble Aromatic Drug by Micellar Solutions of Amphiphilic Block Copoly(oxyalkylene)s*

This chapter is a summary of our work on the design of block copolymer micellar systems with improved solubilization capacity for poorly soluble aromatic drugs. The copolymers of interest are block copoly(oxyalkylene)s with linear dior triblock architecture which combine hydrophilic poly(ethylene oxide) with hydrophobic blocks formed from poly(propylene oxide), poly(1,2-butylene oxide), poly(st...

متن کامل

Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.

The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic po...

متن کامل

Phase behavior of block co-poly(ethylene oxide-butylene oxide), E18B9 in water, by small angle neutron scattering.

We present a small angle neutron scattering (SANS) study into the micellar structures of diblock copolymer E18B9 (where E denotes a ethylene oxide unit and B denotes a butylene oxide unit, 18 and 9 being the number of repeat units respectively) in aqueous solution over a range of five different concentrations (0.2, 1.0, 10.0, 20.0, and 40.0% (by mass fraction)) and eight temperatures (10 to 90 ...

متن کامل

Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: segment effect on gold ion reduction, stabilization, and particle morphology.

We report here on the segment effects of poly(ethylene oxide)-containing block copolymers (PEO-BCP) on the reduction activity for tetrachloride gold(III) ([AuCl(4)](-)), interfacial activity for gold surface, colloidal stability, and morphology of gold nanoparticles formed in aqueous solutions. In particular, the effects of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), polyethylene (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 27 18  شماره 

صفحات  -

تاریخ انتشار 2011